Soft Computing Using Neural Estimation with LMI-Based Model Transformation for OMR-Based Control of the Buck Converter

نویسندگان

  • Anas N. Al-Rabadi
  • Othman M.-K. Alsmadi
چکیده

This paper introduces a new method of intelligent control to control the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses recurrent supervised neural network to estimate certain parameters of the transformed system matrix [ A ~ ]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[ B ~ ], [ C ~ ], [ E ~ ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental simulation results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement. Index Terms Buck Converter, Linear Matrix Inequality (LMI), Neural Network (NN), Order Model Reduction (OMR), State Feedback Control, Supervised Learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Reduction-Based Control of the Buck Converter Using Linear Matrix Inequality and Neural Networks

A new method to control the Buck converter using new small signal model of the pulse width modulation (PWM) switch is introduced. The new method uses recurrent supervised neural network to estimate certain parameters of the transformed system matrix [ A~ ]. Then, linear matrix inequality (LMI) optimization is used to obtain the permutation matrix [P] so that system transformation {[ B~ ], [ C~ ...

متن کامل

Estimating scour below inverted siphon structures using stochastic and soft computing approaches

This paper uses nonlinear regression, Artificial Neural Network (ANN) and Genetic Programming (GP) approaches for predicting an important tangible issue i.e. scours dimensions downstream of inverted siphon structures. Dimensional analysis and nonlinear regression-based equations was proposed for estimation of maximum scour depth, location of the scour hole, location and height of the dune downs...

متن کامل

A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications

This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...

متن کامل

Application of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values

Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial  neu...

متن کامل

An Improved Control Method Based on Modified Delta-Sigma Modulator for Buck Converter

This paper proposes an improved control method based on modified Delta-Sigma Modulator (DSM) to enhance transient response and improve harmonic contents of buck DC-DC converter. The main advantages of the proposed method are improving the output voltage frequency spectrum, correction of the output voltage harmonic contents and sideband harmonics, reduction of switching noise peaks at the output...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Engineering Letters

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2009